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1.  Setting expectations for exascale compiler 
mapping technology from a 20 year 
retrospective  

2.  Key issues in future programming models and 
opportunities for leverage 

3.  A look at autotuning, a specific enabling 
technology for exascale 

Three Goals for Talk 
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•  Old approaches to compilers mapping parallelism  
–  Limited to loops and array computations 
–  Difficult to find sufficient granularity (parallel work between 

synchronization) 
–  Very restricted mapping strategy 
–  Success but from fragile, complex software 

Previous Work in Automatic Parallelization 

From Hall et al, “Maximizing Multiprocessor 
Performance with the SUIF Compiler”, IEEE 
Computer, Dec. 1996. 

50% higher Specfp95 ratio than 
previously reported 
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1990s View 

•  Programmer writes 
code at high level 
– Much or all 

complexity managed 
by compiler  
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•  But doing everything in the compiler is hard! 
•  Expert programmers have knowledge that 

should be exploited. 
•  Compiler development cycle is slow. 
•  Application scientists will find expedient 

solutions. 



•  What’s not working 
–  Transformations and optimizations often applied in 

isolation, but significant interactions 
–  Static compilers must anticipate all possible 

execution environments  
–  Potential to slow code down; many users say “never 

use O3” 
–  Users write low-level code to get around compiler 

which makes things even worse 

Historical Organization of Compilers,  
Users’ Perspective 
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Bottom line: Known compiler techniques capable of 
much better performance than they are delivering, but 
solutions don’t generalize across applications and 
complexity of system is difficult to maintain. 
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Compiler Technology:  
Opportunities and Challenges 

Successes: 
Vectorization, ILP, scalar 
optimization, managing 
registers, code generation, 
locality optimization (partial) 

Needed advances: 
Programming model 
abstractions partnered with 
compiler, interface to run-
time and programmer 

Still open issues: 
Coarse-grain parallelism, 
high performance for 
irregular computations,  
rapid deployment 

Opportunities: 
Machine resources available 
for tuning, exascale 
programming challenges 
demand fundamental change 
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•  Exascale architectures will be fundamentally different 
–  Power management THE fundamental issue 
–  Reliability (h/w and s/w) increasingly a concern 
–  Memory reduction to .01 bytes/flop  
–  Hierarchical, heterogeneous 

•  Basic rethinking of the software “stack” 
–  Express and manage locality and parallelism for ~billion 

threads 
–  Create/support applications that are forward scalable 

and portable (underlying tools map to h/w details) 
–  Manage power and resilience requirements  

•  Locality is a big part of power/energy 
•  Resilience should leverage abstraction changes 

“Software Challenges in Extreme Scale Systems,” V. Sarkar, B. Harrod and A. Snavely, SciDAC 2009, June, 2009.  Summary 
of results from a DARPA study entitled, “Exascale Software Study,” June 2008 through Feb. 2009. 

Exascale Challenges Will Force Change  
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Thanks to exascale reports and workshops!
•  Multiresolution programming systems for different users 

–  Joe/Stephanie/Doug [Pingali, UT] 
–  Elvis/Mort/Einstein [Intel] 

•  Specialization simplifies and improves efficiency 
–  Target specific user needs with domain-specific languages/libraries 
–  Customize libraries for application needs and execution context 

•  Interface to programmers and runtime/hardware 
–  Seamless integration of compiler with programmer guidance and 

dynamic feedback from runtime 
•  Toolkits rather than monolithic systems 

–  Layers support different user capability 
–  Collaborative ecosystem 

•  Virtualization (over-decomposition) 
–  Hierarchical, or flat but construct hierarchy when applicable? 
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A View in 2012 



•  Definition:  
–  Automatically generate a “search space” of possible 

implementations of a computation 
•  A code variant represents a unique implementation of a 

computation, among many  
•  A parameter represents a discrete set of values that 

govern code generation or execution of a variant 
–  Measure execution time and compare 
–  Select the best-performing implementation (for exascale, 

tradeoff between performance/energy/reliability) 
•  Key Issues: 

–  Identifying the search space 
–  Pruning the search space to manage costs 
–  Off-line vs. on-line search 

What is Autotuning? 

 9 



a.  Autotuning libraries 
–  Library that encapsulates knowledge of its performance 

under different execution environments 
–  Dense linear algebra: ATLAS, PhiPAC 
–  Sparse linear algebra: OSKI 
–  Signal processing: SPIRAL, FFTW  

b.  Application-specific autotuning 
–  Active Harmony provides parallel rank order search for 

tunable parameters and variants 
–  Sequoia and PetaBricks provide language mechanism for 

expressing tunable parameters and variants 
c.  Compiler-based autotuning (this talk!) 

–  Other examples: Saday et al., Swany et al., Eignenmann et al. 
–  Related concepts: iterative compilation, continuous 

compilation, learning-based compilation  

Three Types of Autotuning Systems 
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{ 
Current/ 
Future  
Work 



Who/What Present Future 

Application 
programmer writes 

A single implementation of 
a computation, or perhaps 
a few guarded by run-time 
tests 

A compact search space 
of parameterized 
variants 

Library developer 
writes 

Numerous implementations 
of a computation, guarded 
by run-time tests 

A compact search space 
of parameterized 
variants 

Compiler generates A single implementation of 
a computation, or perhaps 
a few guarded by run-time 
tests 

A compact search space 
of parameterized 
variants 

System executes Compiled code as provided A synthesis of variants 
and their parameter 
values meeting 
optimization criteria 

Differences: Present and Future 

 11 



•  Foundational Concepts 
–  Identify search space through a high-level description 

that captures a large space of possible implementations 
–  Prune space through compiler domain knowledge and 

architecture features 
–  Provide access to programmers with transformation 

recipes (controversial) 
–  Uses source-to-source transformation for portability, 

and to leverage vendor code generation  
–  Requires restructuring of the compiler 

•  Impact 
–  Developers write less and higher-level code, more 

automatically generated/managed 
–  Systematic characterization and analysis 

Compiler-Based Autotuning: My Philosophy 
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a in shared memory, both a and b are 
read through texture memory 

Different computation decomposition 
leads to additional tile command 

Nvidia TC2050 Fermi 
implementation 
Mostly corresponds to CUBLAS 
3.2 and MAGMA  

Nvidia GTX-280 implementation 
Mostly corresponds to CUBLAS 
2.x and Volkov’s SC08 paper 

Transformation Recipes for Autotuning:  
Incorporate the Best Ideas from Manual Tuning 
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•  Performance comparison with CUBLAS 3.2 

Compiler + Autotuning can yield comparable and even 
better performance than manually-tuned libraries 
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Matrix-Matrix Multiply (dgemm) 

Matrix-Vector Multiply (sgemv) 

“Autotuning, Code Generation and Optimizing Compiler Technology For GPUs,” M. 
Khan, PhD Dissertation, University of Southern California, May 2012. 



Autotuning and Specialization for Nek5000 

•  Applications: nuclear energy, astrophysics, ocean 
modeling, combustion, bio fluids, .... 

•  Scales to P > 10,000 (Cray XT5, BG/P) 
•  > 75% of time spent on manually optimized mxm 

–  matrix multiply of very small, rectangular matrices 
–  matrix sizes remain the same for different 

problem sizes 

Spectral element code: turbulence in wire-wrapped subassemblies 
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Library: 
2.2X speedup for 
specialized DGEMM  

nek5000: Automatically-Generated BLAS Code 
is Faster than Manually-Tuned Libraries 

Application:  
26% performance 
gain on Jaguar 
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“Autotuning and Specialization: Speeding up Nek5000 with Compiler Technology,” J. Shin, M. W. Hall, J. Chame, C. Chen, P. Fischer, 
P. D. Hovland, International Conference on Supercomputing, June, 2010. 



Autotuning and Specialization also Benefit PETSc 
Sparse Libraries 

Example: MatSolve_SeqBAIJ_N 

Represents sparse matrix as 
collection of dense blocks 

PETSc includes a large number 
of different implementations 
specialized for different block 
sizes 

•  PFloTran, an example from PERI 
•  Models Multiscale-Multiphase-Multicomponent Subsurface Reactive 

Flows 
•  PETSc routines comprise 30% of execution time on hopper 

at NERSC.  Two routines achieve only 4% of peak. 

 17 

“Improving High-Performance Sparse Libraries using Compiler-Assisted Specialization: A PETSc Case Study”, S. Ramalingam, M. W. 
Hall, C. Chen, Workshop on High-Level Programming Models and Supporting Systems, May, 2012. 



for si = 0 to NS-1	
  for k = 0 to NZ-1	
    for j = 0 to NY-1	
      for i = 0 to NX-1	
        r[i + j*JR + k*KR] -=	
              A[i + j*JA + k*KA + SA[si]]	
            * x[i + j*JX + k*KX + Sx[si]]	

2D 6-point Stencil 

•  Semi-coarsening multigrid on structured grids 
–  Residual computation contains sparse matrix-vector 

multiply bottleneck, expressed in 4-deep loop nest 
–  Key computation identified by HPCToolkit 
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Application example from PERI:  
SMG2000 Optimization 



Selected parameters: 
TI=122,TJ=106,TK=56,UI=8,US=3,Comp=gcc 
Performance gain on residual computation: 
2.37X  
Performance gain on full app:  
27.23% improvement 

Optimization search 
space has 581M points! 

Parallel search (Active 
Harmony) evaluates 
490 points, converges 
in 20 steps 

Parallel Heuristic-Based Search for 
SMG2000 Converges Rapidly 

Outlined Code (from ROSE outliner) 
for (si = 0; si < stencil_size; si++)  
    for (kk = 0; kk < hypre__mz; kk++)  
        for (jj = 0; jj < hypre__my; jj++)  
            for (ii = 0; ii < hypre__mx; ii++)  
                rp[((ri+ii)+(jj*hypre__sy3))+(kk*hypre__sz3)] -=  
                    ((Ap_0[((ii+(jj*hypre__sy1))+ (kk*hypre__sz1))+ 
                     (((A->data_indices)[i])[si])])*  
                     (xp_0[((ii+(jj*hypre__sy2))+(kk*hypre__sz2))+(( *dxp_s)[si])]));  

CHiLL Transformation Recipe  
permute([2,3,1,4]) 
tile(0,4,TI) 
tile(0,3,TJ) 
tile(0,3,TK)  
unroll(0,6,US)  
unroll(0,7,UI) 
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“Auto-tuning Full Applications: A Case Study", A. Tiwari, C. Chen, C. Liao, J. Chame, J. Hollingsworth, M. Hall and D. Quinlan, 
International Journal of High Performance Computing Applications, 25(3):286-294, Aug. 2011. 



•  Conceptual: Rethink the development process as a way of 
expressing a search space rather than a fixed 
implementation 
–  What are the right abstractions to expose to 

programmer 
–  Integrate into multiresolution system 

•  Navigating prohibitively large search space 
–  Includes performance, power and reliability 
–  Models and pruning are critical 
–  Parallel search algorithms can be effective 
–  Tuning multiple computations simultaneously still an 

open problem 
•  Managing overhead (performance, storage and energy) 

Summary: Autotuning Challenges 
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Example	
  Tools	
  Scenario:	
  Op3mizing	
  Data	
  Decomposi3on	
  
From	
  DARPA	
  Exascale	
  So<ware	
  Study	
  

Three enabling 
technologies 

Companion Computations: 
Execute collaboratively with 
computation to improve its 
execution 

Autotuning: 
Automatically 
explore search space 
of implementation 
alternatives 

Data Collection and Analysis: 
Gather and synthesize data 
about execution 
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